Cognitive Logistics Operations through Secure, Dynamic and ad-hoc Collaborative Networks
The COG-LO project

Kostas Kalaboukas, SingularLogic SA

IPIC conference, London 11 Jul 2019
Trends

- eCommerce growth
- Same day delivery
- Universal Postal Sector Transformation
- Globalization

...
Main Challenges

Load factor optimization

- Merge/consolidate deliveries
- Identify “nearby” opportunities
- Create ad-hoc collaborations

Dynamic response to events and ad-hoc orders

- Ad-hoc deliveries/ returns
- Missed deliveries
- ~25% of the total delivery requests for EKOL Logistics is on the fly.

- Flexibility
- (re)schedule deliveries
- Knowledge generation from big data (events, missed deliveries, traffic, etc.)

The growth of ecommerce and Cross-country deliveries

- Common information models
- Alignment of tools and delivery processes

- Secure, private and trusted networks
- Security and Privacy aware policies
- Blockchain ensuring trust

“Cargo Hitchhiking” Tool

- IoT and Analytics technology
- Tools to identify possible collaborations in real-time and along the route

“Cognitive Logistics Advisor” tool

- AI/ Predictive analytics
- Cognitive Logistics Object (CLO)
CLO is a **virtualized entity** that participates in the logistics process,

(digitally) represents **different actors** such as cargo, truck, traffic infrastructure, supporting system, etc. (depending on the case)

and has a **different capabilities** (from basic functionalities up to autonomous decision making and actuation),

which are **configured** per case.
Collaborative and Cognitive Logistics Framework
Collaborative and Cognitive Logistics Framework

Business models

Cognitive Behavior

CLO
Collaborative and Cognitive Logistics Framework

- Business models
- Cognitive Behavior
- CLO
- Social Networks (SIoT)
Collaborative and Cognitive Logistics Framework

- Business models
- Cognitive Behavior
- Security/Privacy/Trust
- Interoperation
- Social Networks (SIoT)
Collaborative and Cognitive Logistics Framework

- Business models
- Cognitive Behavior
- Security/ Privacy/ Trust
- Interoperation
- Social Networks (SIoT)
- Optimization
How it works

1. A CLO is always aware of its status

2. The CLO (truck, warehouse, Parking spot, etc.) joins different fixed or ad-hoc social networks

3. Through **Social Internet of Things**, the CLO communicates with its fellow CLOs to negotiate about alternatives in case of an event

4. The **Cognitive Advisor** suggests optimal solutions
Project Results

<table>
<thead>
<tr>
<th>Methodological approach</th>
<th>#1: New cognitive cargo-centric multi-modal transport models</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#2: A reference model for future Cognitive Logistics behavior</td>
</tr>
<tr>
<td>Core Services</td>
<td>#3: Cognitive behavior tools with APIs</td>
</tr>
<tr>
<td></td>
<td>#4: Comprehensive framework/tools for security, privacy and trust</td>
</tr>
<tr>
<td></td>
<td>#5: Collaboration platform powered by Social Internet of Things</td>
</tr>
<tr>
<td>Tools</td>
<td>#6: Cargo Hitchhiking tool</td>
</tr>
<tr>
<td></td>
<td>#7: Cognitive Advisor tool</td>
</tr>
</tbody>
</table>
A modular approach

- Not a monolithic platform.

- Set of reference models, services and tools to allow for more collaborative and cognitive logistics

- Different implementations and configurations according to customer needs
Posta Slovenia-Croatia Post: Cross-country parcel deliveries

Context

e-Commerce parcels from Slovenia to Croatia through Postal Operator services

Problem/ Challenge

• Collaborative parcels tracking
• Optimized Slovenia->Croatia deliveries (currently only through Ljubljana hub)
• Real-time load factor monitoring and improvement
Hellenic Posts: Backbone and urban parcels deliveries

Context
- Backbone logistics for the intra-country transportation (Athens -> Thessaloniki)
- Urban logistics - merging delivery and picking boxes process

Problem/ Challenge
Backbone logistics:
- Improve leading position with new collaborations
- Load factor optimization

Urban Logistics
- Improve response to ad-hoc events
- Real-time optimization and routing
- New collaborative models (retail,...)
EKOL: Optimized cargo forwarding at Port of Trieste

Context
Cargo transshipment operations from Eastern Europe to Turkey – multimodal operations and forwarding (truck, train, ship) exploiting Trieste-Ostrava railway and Trieste-Lavrio-Yalova port connections

Problem/ Challenge
• Under-utilization of resources
• Legislative restrictions on different truck types
• Cancellations or delays (road or rail network)
• Ad-hoc orders in Eastern Europe
• Predict delays and events in Trieste railway operation
• Optimization of orders’ and trucks’ allocation
Benefits

- Increased load factor
- Reduced costs
- Reduced deliveries - improved assets utilization
- Improve delivery times
- Improve responsiveness
- Improve customer satisfaction
COgnitive Logistics Operations through secure, dynamic and ad-hoc collaborative networks

Project Coordinator

cnit

Technical Coordinator

Singular Logic

Scientific Coordinator

Jožef Stefan Institute

Project Funding ~ 5 mio €

Start Month: June 2018
End Month: May 2021
Duration: 36 months

Technology Providers

- cnit
- Singular Logic
- INTRASOFT INTERNATIONAL
- swarco
- NEC
- Jožef Stefan Institute

Consultancy

- TRT
- Pilots
- Pošta Slovenije
- Hrvatska pošta
- EATA
- ekol
- Associations

Optimization, big data analytics

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

ITS HELLAS
THANK YOU

www.cog-lo.eu | #COG_LO

www.facebook.com/COGLOProject

This project has received funding from the European Union’s Horizon 2020 - EU.3.4. SOCIETAL CHALLENGES - Smart, Green And Integrated Transport programme under grant agreement number 769141.

This publication reflects only the author’s view. The European Union is not responsible for any use that may be made of the information it contains.