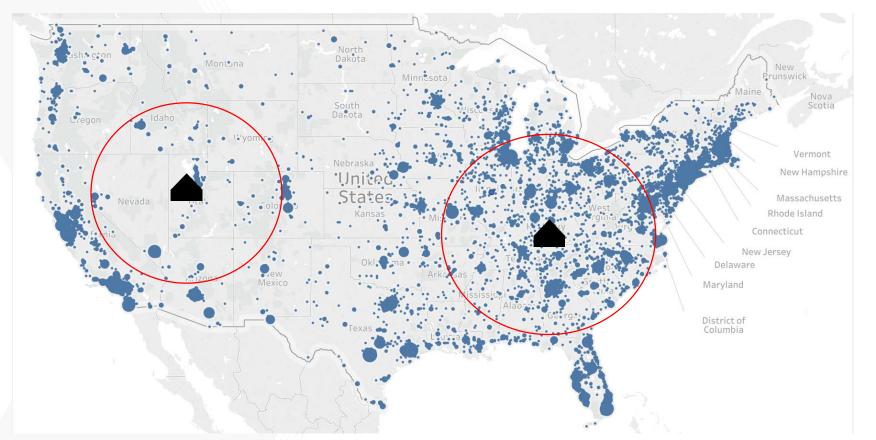


IPIC 2019 | 6th International Physical Internet Conference | London


PHYSICAL INTERNET ENABLED HYPERCONNECTED FULFILLMENT OF TIME SENSITIVE E-COMMERCE ORDERS DELIVERY -SERVICE-DRIVEN FULFILLMENT-

SERVICE-DRIVEN FULFILLMENT

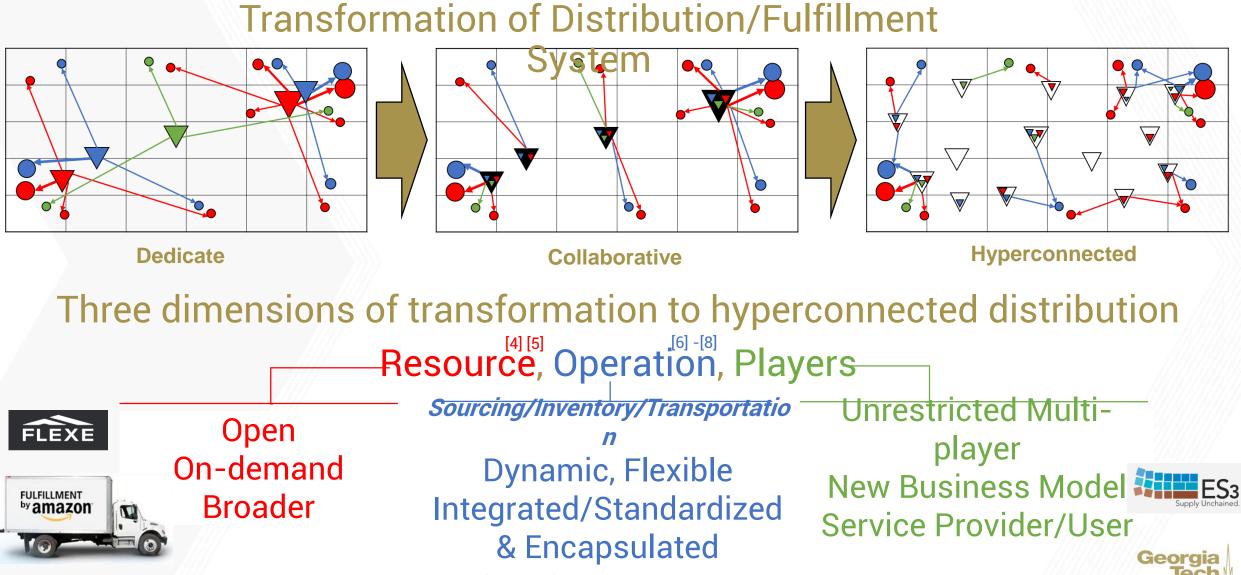
NAYEON KIM BENOIT MONTREUIL WALID KLIBI

CREATING THE NEXT®

Online Order Fulfillment – Changing Business Environment

Market Size ↑

Customer Required Delivery Leadtime ↓


Competition \uparrow

Geora

Service incapability causes customer <u>customer loss</u> dissatisfaction hyperconnected fulfillment system be a solution to meet customer needs without tremendous capital investment?

Kim, Montreuil & Klibi, *Physical Internet Enabled Hyperconnected Fulfillment of Delivery Time Sensitive E- Commerce Orders*[1] Agatz et al., 2008; [2] Lang & Bressolles, 2013; [3] Jie et al., 2015 6th International Physical Internet Conference (London)

Hyperconnected Distribution/Fulfillment System (HDS/HFS)

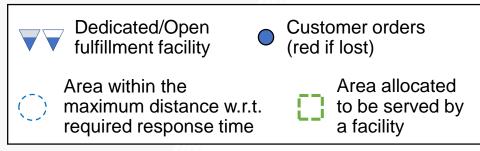
Kim, Montreuil & Klibi, *Physical Internet Enabled Hyperconnected Fulfillment of Delivery Time Sensitive E-*[4] Sobrabi et al. 2012: [5] Sobrabi et al. 2016: [6] Yau

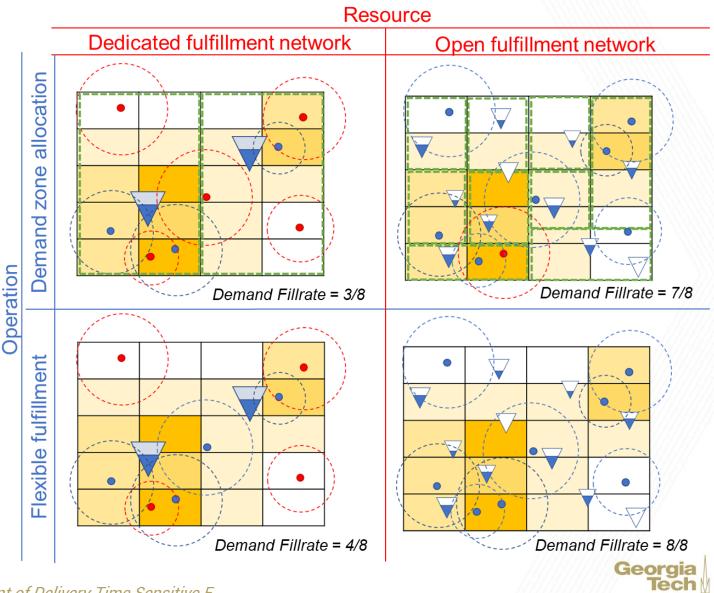
[4] Sohrabi et al., 2012; [5] Sohrabi et al., 2016; [6] Yang et al., 2017a; [7] Yang et al., 2017b, [8] Pan et al.,

CREATING THE NEXT

6th International Physical Internet Conference (Londor 2015

Hyperconnected Fulfillment System (HFS)

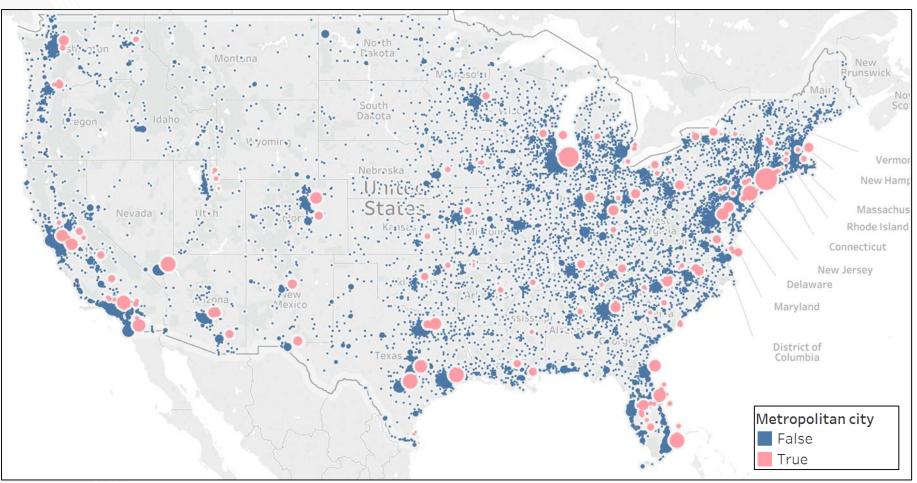

Resource


 Dedicated vs. Open FC network

Operation (Sourcing)

• Demand zone allocation vs. Flexible fulfillment

Demand fillrate can potentially improved by increased customer proximity and flexible fulfillment from pooled inventory



CREATING THE NEXT

Kim, Montreuil & Klibi, *Physical Internet Enabled Hyperconnected Fulfillment of Delivery Time Sensitive E-Commerce Orders*

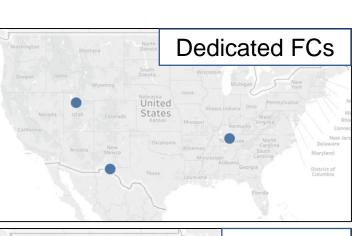
Case Study: E-Commerce Manufacturer in USA Market

Assume customer require certain delivery lead time sensitive to area.

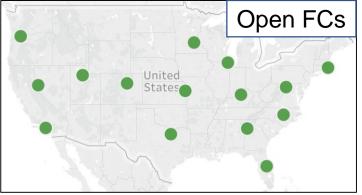
Demand will be lost if the lead time cannot be met. Kim, Montreuil & Klibi, Physical Internet Enabled Hyperconnected Fulfillment of Delivery Time Sensitive E-

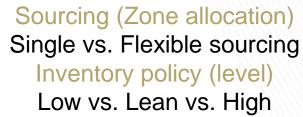
Commerce Orders

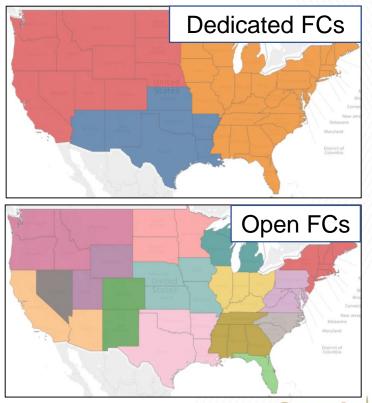
6th International Physical Internet Conference (London)



Case Study: Scenario Design

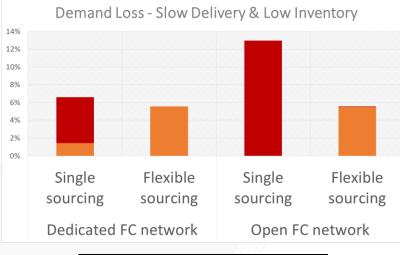

Market Environment Customer requested delivery leadtime Fast vs. Slow

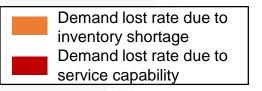

Average % of Customers Order-To-Scenario a: Scenario b: Delivery **Slow Delivery Fast Delivery** Expected Metro Other Metro Other Time Areas Areas Areas Areas (day) 0% 0% 40% 0% 0 0% 0% 25% 45% +1 5% 25% +2 0% 0% +3 25% 20% 5% 5% 5% 5% 25% 25% +4 5% 5% +5 20% 25% 15% 5% 5% +6 15% +7 10% 10% 5% 5% 5% 5% 5% 5% Longer Total 100% 100% 100% 100%



Resource

Operation


Georgia Tech CREATING THE NEXT


Kim, Montreuil & Klibi, Physical Internet Enabled Hyperconnected Fulfillment of Delivery Time Sensitive E-Commerce Orders 6th International Physical Internet Conference (London)

Case Study Result: Lost Demand – Slow Delivery

Low Inventory

		Resource	•	
	Dedicated	Market Gain		
	FC network	network	(%)	
Single sourcing	6.6%	-6.4%		
Flexible sourcing	5.5%	5.5%	0.0%	
Market Gain (%)	-	7.4%	1.1%	
	sourcing Flexible sourcing Market Gain	FC networkSingle sourcing6.6%Flexible sourcing5.5%Market Gain-	Dedicated FC networkOpen FC networkSingle sourcing6.6%13.0%Flexible sourcing5.5%5.5%Market Gain-7.4%	

Lean	Inventory
	,

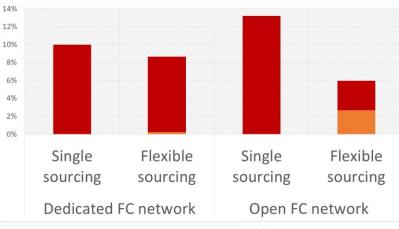
High Inventory

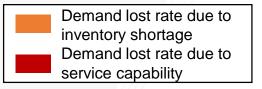
	-	Resource								
		Dedicated	Open FC	Market Gain						
		FC network	network	(%)						
on	Single sourcing	0.0%	0.1%	-						
Operation	Flexible sourcing	0.0%	0.0%	-						
ð	Market Gain (%)	-	0.1%	-						

		Resource							
		Dedicated	Market Gain						
		FC network	network	(%)					
	Single	0.0%	0.0%						
Operation	sourcing	0.076	0.076	_					
	Flexible	0.0%	0.0%						
Эeг	sourcing	0.0%	0.0%	-					
Q	Market Gain								
	(%)	-	-	-					

- When inventory is low, open FC network with single sourcing (zone allocation) performs worse than dedicated FC network with single sourcing; Smarter inventory allocation strategy is needed
- With flexible sourcing, only inventory shortage itself becomes bottleneck
- With slow delivery, the advantage of hyperconnected fulfillment for basic service capability is not seen

Kim, Montreuil & Klibi, *Physical Internet Enabled Hyperconnected Fulfillment of Delivery Time Sensitive E-Commerce Orders*


6th International Physical Internet Conference (London)


Case Study Result: Lost Demand – Fast Delivery

Low Inventory

			Resource	•		
		Dedicated	Open FC	Market Gain		
		FC network	(%)			
	Single	10.0%	13.2%	-3.2%		
Operation	sourcing					
	Flexible	8.6%	6.0%	2.7%		
	sourcing	0.070		2.770		
	Market Gain		7.2%	4.0%		
	(%)	-	1.270	4.0%		

Demand Loss - Fast Delivery & Low Inventory

		entory	
		Resource	•
	Dedicated	Open FC	Market Gain
	FC network	network	(%)
Single	7.0%	1.2%	5.8%

Loan Inventory

Single sourcing 7.0% 1.2% 5.8% Flexible sourcing 6.4% 0.8% 5.6% Market Gain (%) 0.4% 6.2%

High Inventory

			Resource	•						
		Dedicated	Open FC	Market Gain						
		FC network	network	(%)						
n	Single sourcing	7.0%	1.1%	5.9%						
Operation	Flexible sourcing	6.4%	0.8%	5.7%						
ŏ	Market Gain (%)	-	0.3%	6.2%						

- Service capability becomes critical factor of demand loss
- With lean/high inventory, all demand loss is caused by service incapability and from metropolitan area
- 0.8% demand loss under open FC network and flexible sourcing with lean/high inventory can only be captured with additional FCs located closer to metro area

Kim, Montreuil & Klibi, *Physical Internet Enabled Hyperconnected Fulfillment of Delivery Time Sensitive E-Commerce Orders*

6th International Physical Internet Conference (London)

Case Study Result: Average Travel Miles Per Order

	Low Inventory							Lean Inv	ventory			High Inventory			
			Resource					Resource				Resource			
very			Dedicated FC network	Open FC network	Reduction Rate (%)			Dedicated FC network	Open FC network	Reduction Rate (%)	r I		Dedicated FC network	Open FC network	Reduction Rate (%)
Delivery	u	Single sourcing	565	177	-69%	u	Single sourcing	567	173	-69%	no	Single sourcing	567	173	-70%
Slow I	Operation	Flexible sourcing	604	247	-59%	berati	Flexible sourcing	556	157	-72%	beration	Flexible sourcing	556	149	-73%
Sic	Ó	Reduction Rate (%)	-	39%	-56%	ŏ	Reduction Rate (%)	-	-9%	-72%	Ó	Reduction Rate (%)	-	-14%	-74%
	Resource					Resource					Resource				
/ery			Dedicated FC network	Open FC network	Reduction Rate (%)			Dedicated FC network	Open FC network	Reduction Rate (%)			Dedicated FC network	Open FC network	Reduction Rate (%)
Delivery	uo	Single sourcing	552	174	-68%	n	Single sourcing	553	171	-69%	no	Single sourcing	553	170	-69%
Fast [Operation	Flexible sourcing	564	223	-60%	Deration	Flexible sourcing	545	155	-72%	peration	Flexible sourcing	545	147	-73%
	do	Reduction Rate (%)	-	28%	-60%	Ö	Reduction Rate (%)	-	-9%	-72%	Ö	Reduction Rate (%)	-	-14%	-73%

- In most cases, average travel miles per order is reduced by about 70% by utilizing open FC network and flexible sourcing
- With single stop shipping, the travel miles directly represents proximity to customers

Kim, Montreuil & Klibi, *Physical Internet Enabled Hyperconnected Fulfillment of Delivery Time Sensitive E-Commerce Orders* 6th International Physical Internet Conference (London)

Conclusion and Future Research

Overall, ~6% of market gain and 73% delivery mile reduction potentials are shown with open FC network and flexible sourcing under tight delivery time constraints

- Measure the impact of hyperconnected fulfillment on cost, profit, and service considering deployment, distribution, and production
- Examine impact of transportation e.g. routing
- Optimal network selection: select which open FC to use and how much and when to store or redeploy
- Extend to multi-product and/or multi-player operation

Thank you

[1] Agatz, N. A., Fleischmann, M., & Van Nunen, J. A. (2008). E-fulfillment and multi-channel distribution–A review. European journal of operational research, 187(2), 339-356.

[2] Lang, G., & Bressolles, G. (2013, January). Economic performance and customer expectation in e-fulfillment systems: a multi-channel retailer perspective. In Supply Chain Forum: An International Journal (Vol. 14, No. 1, pp. 16-26). Taylor & Francis.
[3] Jie, Y. U., Subramanian, N., Ning, K., & Edwards, D. (2015). Product delivery service provider selection and customer satisfaction in the era of internet of things: A Chinese e-retailers' perspective. International Journal Journal of Production Economics, 159, 104-116.

[4] Sohrabi, H., Montreuil, B., & Klibi, W. (2016). On comparing dedicated and hyperconnected distribution systems: an optimizationbased approach. In International Conference on Information Systems, Logistics and Supply Chain (ILS2016). Bordeaux, France.

[5] Sohrabi, H., Klibi, W., & Montreuil, B. (2012). Modeling scenario-based distribution network design in a Physical Internet-enabled open Logistics Web. In International conference on information systems, logistics and supply chain.

[6] Yang, Y., Pan, S., & Ballot, E. (2017a). Innovative vendor-managed inventory strategy exploiting interconnected logistics services in the Physical Internet. International Journal of Production Research, 55(9), 2685-2702.

[7] Yang, Y., Pan, S., & Ballot, E. (2017b). Mitigating supply chain disruptions through interconnected logistics services in the physical internet. International Journal of Production Research, 55(14):3970–3983.

[8] Pan, S., Nigrelli, M., Ballot, E., Sarraj, R., & Yang, Y. (2015). Perspectives of inventory control models in the physical internet: A simulation study. Computers & Industrial Engineering, 84:122–132.

Georgia Tech

CREATING THE NEXT

Kim, Montreuil & Klibi, *Physical Internet Enabled Hyperconnected Fulfillment of Delivery Time Sensitive E-Commerce Orders* 6th International Physical Internet Conference (London)