STATE OF THE ART IN CARBON FOOTPRINTING OF LOGISTICS ACTIVITIES

Igor Davydenko
TNO STL, Den Haag NL
Reduction goal Paris: Freight transport

CO₂-emissions freight transport in EU

Freight volume growth 1990-2050: 250%

Reduction of absolute emissions: 60%

Per ton-kilometre transported: FACTOR 6!

2050: 60% reduction relative to 1990

2030: 20% reduction relative to 2008

Note: Reduction goals freight transport assumed equal to overall reduction goal for transport sector in EU Whitepaper (2011)
LOW-CARBON “BUILDING BLOCKS”

Both technical and organizational measures belong to the solution

- km-reduction through improved logistics / supply chains
- modal shift
- improved efficiency of conventional vehicles
- sustainable / biofuels for conventional vehicles
- electricity and hydrogen in urban & regional applications

do measures add up to target?

Evidence-based assessment of CO₂ reduction & effectiveness of solutions

Synchromodality

PI solutions
CARBON FOOTPRINTING IS A TOOL FOR EMISSION REDUCTIONS

- **Carbon footprint** is the total set of greenhouse gas emissions caused by an individual, event, organisation, or product, expressed as carbon dioxide equivalent.
CARBON FOOTPRINT OF COMPLEX LOGISTICS CHAINS

absolute GHG emissions

\[
E_i = \text{CO}_2 \text{ emissions allocated to shipment by carrier } i
\]

\[
E_{\text{shipper}} = \sum_{i=1}^{n} E_i
\]

relativie emissions per activity unit

\[
KPI_{\text{supply chain}} = \frac{\sum E_i}{U}
\]

\[
KPI_{\text{logistics chain}} = \frac{\sum E_i}{U \times GCD_{o-d}}
\]

- \(U\) [tonne] or [\(m^3\)]
- \(E_1\) [kgCO\(_2\)eq.]
- \(E_2\) [kgCO\(_2\)eq.]
- \(E_3\) [kgCO\(_2\)eq.]

origin

shipper

GCD\(_1\)

GCD\(_2\)

GCD\(_3\)

destination

client
SYNCHROMODAL TRANSPORT:

EVIDENCE FOR THE CO2 REDUCTION EFFECT

CO2 per ton shipped

\(\downarrow\) CO2 % saved

CO2 per ton shipped
STATE OF THE ART

- **Carbon footprinting is mostly driven by the users of transport; LSPs support this**
 - Specific goals for reduction of carbon footprint from logistics activities
 - Logistics network optimization
 - For carriers it is a way to stand out from competition

- **Reliance on default emission factors is the first step**
 - Good for quick evaluation of the options
 - Works well for ‘average operations’
 - Challenging for fine tuning of the logistics solutions and non-standard shipments

- **Necessary data are here, processing real world data is still a challenge**
 - Freight consolidation requires determining a shipment’s share
 - Carriers generally have data on fuel use, while shippers have shipment data

- **Substantial interest in application of methodologies**
 - What drives CO2 emissions?
 - How reliable are the computation results?
 - What is the fairest way of emission allocation?
Practice Examples
Next Steps

» Standardization
 » We strongly need a commonly accepted method on emission computation and accountancy
 » ISO standard is the most preferred outcome

» Rolling out tests, cases and implementations
 » Helping organizations with carbon accountancy
 » Getting more critical mass
 » Getting businesses used to
 » Carbon footprinting
 » Support decisions evidenced by CF
NEXT STEPS: ICT

Developments towards logistic data travelling along with shipments can also be used to collect data for carbon footprinting

Getting IT systems ready for automation

• Solution for emission data exchange
• Provide sufficient protection of sensitive performance data
• Allow for a right level of aggregation
• Internalization of the results: help taking decisions on low-carbon logistics solutions
OUTLOOK: AUTOMATED SOLUTIONS

effortless, automated data collection through connected ICT systems

- primary data
- calculation methods
- information
- analyses / elaboration
- applications / knowledge

outputs exchanged between ICT systems of stakeholders

- business ICT systems

calculations performed by business ICT systems using certified tools based on standardized protocols

origin – destination tone / m³ client

fuel consumption routes vkms

comprehensive set of primary data allows generating information for a wide range of applications

Partner Logistics Bergen op Zoom
43 km hemelsbreed
Cobelfret Rozenburg

Leeds
400 m.

Mepavex Bergen op Zoom
CARBON FOOTPRINTING OF LOGISTICS ACTIVITIES

Dr. Igor Davydenko, PDEng
Sustainable Transport & Logistics
Anna van Buerenplein 1, Den Haag
Postbus 96800
2509 JE Den Haag
The Netherlands
T +31 88 866 8475
igor.davydenko@tno.nl