Inventory Control Models towards Physical Internet: Lateral Transshipment Policy Determination by Simulation

Banu Y. Ekren, Anıl Akpunar, and Gizem Sağol
Yaşar University
Department of Industrial Engineering
İzmir, TURKEY
Overview

- Introduction
- Literature Review
- Simulation Modeling of the Network
- Results
- Conclusion
Overview

Introduction

Literature Review

Simulation

Results

Conclusion
By the recent technological development, realization of horizontal integration throughout the supply chain is possible. Hence, the management as well as the inventory control policy of a supply chain can be performed more efficiently.
An innovative supply chain network is a Physical Internet (PI) philosophy oriented network in which the distribution and storage system is transformed into a common, open, interconnected logistics network of PI hubs shared by numerous companies.
Overview

Introduction

Literature Review

Simulation

Results

Conclusion

\[Ct_i = 30 \text{ items} \]
\[t_{ij} = \$1/\text{km} \]

\[Ct_6 = 30 \text{ items} \]
\[t_{6j} = \$1/\text{km} \]

\[S_{H1} = 750 \]

\[1,000 \text{ km} / 10 \text{ days} \]

\[S_{H2} = 750 \]

\[700 \text{ km} / 6 \text{ days} \]

\[S_{H3} = 750 \]

\[700 \text{ km} / 6 \text{ days} \]

\[R1 \]

\[450 \text{ km} / 4 \text{ days} \]

\[100 \text{ km} / 2 \text{ days} \]

\[R2 \]

\[S_{R1} = 250 \]

\[h_1 = \$0.4/\text{item} \]

\[100 \text{ km} / 2 \text{ days} \]

\[350 \text{ km} / 3 \text{ days} \]

\[100 \text{ km} / 2 \text{ days} \]

\[450 \text{ km} / 4 \text{ days} \]

\[700 \text{ km} / 6 \text{ days} \]

\[H3 \]

\[700 \text{ km} / 6 \text{ days} \]

\[100 \text{ km} / 2 \text{ days} \]

\[100 \text{ km} / 2 \text{ days} \]

\[100 \text{ km} / 2 \text{ days} \]

\[700 \text{ km} / 6 \text{ days} \]

\[H1 \]

\[100 \text{ km} / 2 \text{ days} \]

\[700 \text{ km} / 6 \text{ days} \]

\[MW \]

\[1,000 \text{ km} / 10 \text{ days} \]

\[700 \text{ km} / 6 \text{ days} \]

\[100 \text{ km} / 2 \text{ days} \]

\[100 \text{ km} / 2 \text{ days} \]

\[350 \text{ km} / 3 \text{ days} \]

\[100 \text{ km} / 2 \text{ days} \]

\[700 \text{ km} / 6 \text{ days} \]

\[H2 \]

\[450 \text{ km} / 4 \text{ days} \]

\[100 \text{ km} / 2 \text{ days} \]

\[700 \text{ km} / 6 \text{ days} \]

\[H3 \]

\[S_{R2} = 250 \]

\[h_2 = \$0.4/\text{item} \]

\[Ct_6 = 30 \text{ items} \]

\[t_{6j} = \$1/\text{km} \]

\[Ct_i = 15 \text{ items}, i = 3, 4, 5 \]

\[t_{ij} = \$0.1/\text{item}, i = 3, 4, 5, j \neq i \]

\[t_{ij} = \$0.3/\text{km}, i = 3, 4, 5, j \neq 1, 2 \]

\[h_i = \$0.1/\text{item}, i = 3, 4, 5 \]
Introduction

- Reactive transshipment
- Proactive transshipment
- Hybrid transshipment
There are quite different opportunities to analyze the effects of PI-enabled logistics network on the decisions of supply chain management.

Our aim is to increase the knowledge on the assessment of the PI-enabled supply chain management by studying different transshipment policies on a two-echelon supply chain network.
Simulation Modeling of the System

Overview
Introduction
Literature Review
Simulation
Results
Conclusion

Simulation

MW
H1
S_{H1} = 750
100 km / 2 days
450 km / 4 days
700 km / 6 days
S_{R1} = 250
h_1 = $0.4/item

H2
S_{H2} = 750
350 km / 3 days
450 km / 4 days
700 km / 6 days
S_{R2} = 250
h_2 = $0.4/item

H3
S_{H3} = 750
100 km / 2 days
700 km / 6 days

R1
R2

C_{t_6} = 30 items
t_{6j} = $1/km

C_i = 15 items, i = 3, 4, 5
\begin{align*}
t_{ij} &= $0.1/km, i = 3, 4, 5; j = 3, 4, 5, i \neq j \\
t_{ij} &= $0.3/km, i = 3, 4, 5; j = 1, 2 \\
h_i &= $0.1/item, i = 3, 4, 5
\end{align*}
Notations

s_{Ri} : safety stock level of retailers, $i = \{1, 2\}$
s_{Hj} : safety stock level of hubs, $j = \{1, 2, 3\}$
S_{Ri} : up-to level of retailers, $i = \{1, 2\}$
S_{Hj} : up-to level of hubs, $j = \{1, 2, 3\}$

α : coefficient for calculating share amount of items in hubs in reactive policy
β_1 : inventory level check coefficient for proactive policy
β_2 : coefficient for calculating share amount of items in hubs in reactive policy

I_{it} : inventory level of retailer $i = \{1, 2\}$ or hub $i = \{3, 4, 5\}$ at the end of day t

D_{it} : demand amount arriving at retailer i, at the beginning of day t, $i = \{1, 2\}$

TC : total cost

h_i : holding cost per item at retailer $i = \{1, 2\}$ or hub $i = \{3, 4, 5\}$

C_{it} : truck capacity in hubs $i = \{3, 4, 5\}$ or main warehouse $i = \{6\}$

t_{ij} : transportation cost from MW, $i = \{6\}$ or transshipment cost from hubs $i = \{3, 4, 5\}$ to any location in the network

d_{ij} : distance (km.) from location i to location j, $i, j = \{1, 2\}$ for retailers; $i, j = \{3, 4, 5\}$ for hubs, and $i, j = \{6\}$ for MW

Q_{it} : order amount of retailer i, $i = \{1, 2\}$ or hub $i = \{3, 4, 5\}$ at the end of day t

q_{ij} : amount of transshipment from hub j to hub i where $j \neq i$

b_i : backorder amount at day t at retailer i, $i = \{1, 2\}$

tp : review period (i.e., days) for proactive lateral transshipment
Simulation Modeling of the System

Overview
Introduction
Literature Review
Simulation
Results
Conclusion

06/21/2018
IPIC 2018

Start simulation
Day \((t) = 0\)

\[t = t + 1 \]

Create demand \((D_i)\) for retailers \((i = 1, 2)\) at day \(t\)

Satisfy demand at retailers and revise inventory level of retailer \(i\) at day \(t\) by \(I_e = I_c - D_i, (i = 1, 2)\)

Check inventory levels of retailers \((I_i)\) at the end of each day \((t)\)

Is the \(l_i \leq s_{si}\) \((i = 1, 2)\)?

Yes

No

Calculate daily cost and update total cost.

Is the demand of retailer fully satisfied?

Meet the demand of retailers at time \(t\), \(Q_{it}\) starting from the closest location of hubs and update the inventory level of hubs.

Is \(l_i \leq s_{si}\) \((i = 3, 4, 5; j = 1, 2, 3)\)?

Yes

No

Order the missing amount from the MW

Do for each hub \(i = 3, 4, 5\) in order

- \(j = i - 2\)
- If \(l_i \leq s_{si}\)
- \(Q_{it} = S_{si} - I_{it}\)

Sort the other hubs than hub \(i\) based on the shortest distance to hub \(i\):

\[n = 1 \]

Do while \(n = 3\)

- \(j = i - 2\)
- \(Q_{it} = Q_{it} - q_{ji}\)
- \(I_{it} = I_{it} - q_{ji}\)

else

- \(n = n + 1\)

end while

If \(Q_{it} > 0\)

Order the \(Q_{it}\) amount from the MW

Calculate TC

else

Calculate TC

Reactive Transshipment Policy

Proactive Transshipment Policy

Check the inventory level of hubs at the end of every \(tp\) days for proactive transshipment

Check the inventory level of hubs at the end of every day \((t)\) for reactive transshipment

Order from the MW

Calculate daily cost and update total cost.
The reactive transshipment policy is considered that it takes place for only hubs. At the end of each day, the current inventory level of hubs is checked in the order of H_1, H_2 and H_3. Based on the (s, S) inventory control problem, the order amount for lateral transshipment or MW is calculated by:

$$Q_{it} = \begin{cases} S_{Hj} - I_{it} & \text{if } I_{it} \leq ss_{Hj}, i = j = 3, 4, 5 \\ 0, & \text{otherwise} \end{cases}$$
The transshipment amount from hub j to hub i, q_{ji}, is calculated by:

$$ q_{ji} = \min (ss_{Hj} \times \alpha, Q_{it}), $$

where $I_{jt} \geq ss_{Hj} \times (1+ \alpha)$. In reactive policy, when a hub’s inventory level decreases to a level lower than its safety stock level, then another hub may make lateral transshipment in the amount of α coefficient of its safety stock level or Q_{it} amount where $0 \leq \alpha \leq 1$. The minimum amount is selected to be sent by the hub.
Note that the review period for proactive lateral transshipment policy is t_p which is also considered to be a decision variable in the optimization procedure. The proactive lateral transshipment takes place only among the hubs. Every t_p day, lateral transshipment may take place when the inventory level of hub i reaches to a lower level of coefficient $-\beta_1$ of its safety stock level: $l_{it} \leq ss_{Hj} \times (1 + \beta_1)$, where $0 \leq \beta_1 \leq 1$, $i = 3, 4, 5$. The order amount for hub i is calculated as in Q_{it}. However, the transshipment amount from hub k to hub i, q_{ki}, $k \neq i$, $k = 3, 4, 5$ is calculated by
If \(I_{kt} > ss_{Hk} (1 + \beta_2) \)
\[
q_{ki} = \min \left(ss_{Hk} \beta_2 ; Q_{it} \right),
\]
meaning that in a lateral transshipment, from a hub, \(\beta_2 \) times of its safety stock level or \(Q_{it} \) amount of inventory level can be sent. The minimum amount is selected to be sent by the hub.
Demands arrive at the retailers, R1 and R2, at the beginning of each day with stochastic amounts.

Demand amounts for R1 and R2 are considered to be normally distributed with mean and standard deviation of (20, 5) and (30, 5), respectively.

Safety stock levels of retailers and hubs, ss_{R1}, ss_{R2}, ss_{H1}, ss_{H2}, ss_{H3}, and the parameters, α, tp, β_1, and β_2 are considered as decision variables that are to be optimized in the models.
Retailers and hubs have capacity constraints in terms of the maximum number of items that they can store in their facilities. These values are assigned as up-to-levels of retailers (S_{R_i}) and up-to-levels of hubs (S_{H_i}) whose values are considered to be: $S_{R_1} = S_{R_2} = 250; S_{H_1} = S_{H_2} = S_{H_3} = 750$, in Design 1 and $S_{R_1} = S_{R_2} = 250; S_{H_1} = S_{H_3} = 1000; S_{H_2} = 1200$, in Design 2.
Simulation Assumptions

- Holding costs for retailers and hubs are $0.4/item and $0.1/item, respectively.
- In transportation from the MW, trucks have load capacity of 30 units. In transshipment among hubs, trucks have load capacity of 15 units. The transportation or transshipment cost is calculated based on the number of trucks.
- The simulation models are run for two years with 60 days of warm-up period for each scenario.
- The optimization is completed by minimizing the simulation run total cost by using the OptQuest tool in ARENA 14.0 commercial software.
Simulation Assumptions

- No order is placed by the stocking locations if there is already on road.
- In each run, ten independent replications are completed.
- In the optimization, fill rate constraint is considered 0.95. Fill rate is defined as a rate at which customer orders can be filled from existing amount of inventory.
- Since it is a popular and useful variance reduction technique, Common Random Numbers (CRN) variance reduction technique is used in the simulation models.
Results

OptQuest results of transshipment policies based on two network designs

<table>
<thead>
<tr>
<th>Design 1</th>
<th>α</th>
<th>θ_1</th>
<th>θ_2</th>
<th>tp</th>
<th>TC</th>
<th>SS_{H1}</th>
<th>SS_{H2}</th>
<th>SS_{H3}</th>
<th>SS_{R1}</th>
<th>SS_{R2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactive</td>
<td>0.81</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>268,086</td>
<td>333</td>
<td>60</td>
<td>442</td>
<td>81</td>
<td>126</td>
</tr>
<tr>
<td>Proactive</td>
<td>-</td>
<td>0.44</td>
<td>0.01</td>
<td>7</td>
<td>300,677</td>
<td>340</td>
<td>133</td>
<td>601</td>
<td>80</td>
<td>121</td>
</tr>
<tr>
<td>Hybrid</td>
<td>0.04</td>
<td>0.28</td>
<td>0.05</td>
<td>5</td>
<td>287,399</td>
<td>265</td>
<td>44</td>
<td>362</td>
<td>81</td>
<td>115</td>
</tr>
<tr>
<td>No Lateral</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>318,495</td>
<td>293</td>
<td>26</td>
<td>407</td>
<td>81</td>
<td>109</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Design 2</th>
<th>α</th>
<th>θ_1</th>
<th>θ_2</th>
<th>tp</th>
<th>TC</th>
<th>SS_{H1}</th>
<th>SS_{H2}</th>
<th>SS_{H3}</th>
<th>SS_{R1}</th>
<th>SS_{R2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactive</td>
<td>0.88</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>417,103</td>
<td>361</td>
<td>72</td>
<td>406</td>
<td>83</td>
<td>130</td>
</tr>
<tr>
<td>Proactive</td>
<td>-</td>
<td>0.81</td>
<td>0.01</td>
<td>5</td>
<td>407,948</td>
<td>400</td>
<td>81</td>
<td>431</td>
<td>88</td>
<td>109</td>
</tr>
<tr>
<td>Hybrid</td>
<td>0.19</td>
<td>0.71</td>
<td>0.06</td>
<td>1</td>
<td>422,607</td>
<td>266</td>
<td>82</td>
<td>383</td>
<td>83</td>
<td>129</td>
</tr>
</tbody>
</table>
In Design 1 network, the best transshipment policy takes place in the reactive policy.

In Design 2 network, the best transshipment policy takes place in the proactive policy.

When there is no lateral transshipment policy in the network (in Design 1), it has the largest total cost.

The second hub’s safety stock level is always lower compared to other hubs’ safety stock levels. This is probably since this hub is located at the middle and it is the closest location to the MW. It tends to share its inventory with the other hubs in the lateral transshipment cases. Hence, by the decreased safety stock level, it carries more inventory to share with the other hubs.
• By looking at the α and β_1 values, we understand that in Design 2, due to the increased values of them, it seems that more lateral transshipment takes places. This is probably because of the fact that, in Design 2, there are higher hub capacities compared to Design 1 and due to the higher transportation cost from hubs to retailers more lateral transshipment takes place. In this design, probably lateral transshipment takes place mostly from the second hub to the others. By that, it tends to keep more inventory in the Hubs 1 and 3, which are the closer hubs to the retailers.
In this work, we study mainly two lateral transshipment policies: reactive and proactive in a two-echelon supply chain network. We seek the best lateral transshipment policy based on two different network designs in terms of hub capacities and transportation cost from hubs to retailers.

We optimize the safety stock levels as well as some other transshipment related parameters such as α, tp, β_1, and β_2, by minimizing the total cost in the system.

In the total cost, we consider backorder costs in retailers, transportation, transshipment costs, and holding costs in hubs and retailers.
Conclusion

As a result of this study, it is observed that the performance of a lateral transshipment policy strongly depends on the studied network design and its parameter values as well as how the transshipment policies are pre-defined.

As a future study, we recommend more network design types to be studied with different lateral transshipment policies to test their performances.

It would be also interesting to analyze the effect of the demand profile (fast or slow moving items) on the transshipment policy determination on the studied networks.