Presentation

› Introduction of CLUSTERS2.0; Dirk´t Hooft, Argus I

› CargoStream; Marc Verelst, P&G

› Connecting flows between European Logistics Clusters; Frans Cruijssen, Argus I

› Rail massification: Challenges and opportunities for Physical Internet; Elvina Nowak, Euralogistics
Clusters 2.0

Open network of hyper connected logistics clusters towards Physical Internet

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 723265.

www.clusters20.eu
What is CLUSTERS 2.0 about

Mega cities: Clusters of economic activities

Silicon valley: Cluster/corporate functions for information technology

Logistics Clusters: agglomeration of several types of firms and operations
 – Logistics Service providers (transportation, 3PL)
 – Logistics operations (warehousing, cross docking)
 – Linked logistics industries (IT, maintenance)

For all clusters advantages:
 – Simplified creating trust
 – Tacit knowledge exchange
 – Incubates collaboration
 – Attracts R&D
 – Attracts suppliers

Well established clusters allow each member to benefit “as if it had a greater scale” (Porter)
Clusters 2.0. Vision is to leverage the full potential of European Logistics Clusters for a sustainable, efficient and fully integrated transport system:

› making optimal use of an Open Network of Logistics Clusters
› enhance and advance towards a better co-ordination between logistics actors in clusters
› and to improve co-ordination and connectivity between European logistics clusters.
What will CLUSTERS 2.0 provide?

› Establishing CargoStream a European wide community for freight sharing and collaboration (demand side)
› Developing New Modular Loading Units and innovative handling and transhipment technology to accelerate handling processes within clusters for road and intermodal modes enabled by
› Enhanced services on the supply side introducing the concept of Proximity Terminal Networks (PTN) enabled by enhanced information and asset management
› Optimised handover and asset management through real time services at depots and terminals
› Newly developed governance models introducing the role of a neutral agent forming the basis for new business models
› Regulation and policy enhancing the set-up of collaborative cluster environments
What is new?

› IT can be an enabler to establish and facilitate collaboration

› New approach on D2D/Network level rather than geographically centered
 – Adding horizontal collaboration to the clustering concept
 – Addressing collaboration on local level (within clusters) linked with network wide community approach

› Include technological developments such as NMLU and related transhipment technology towards automatisation of transhipment processes

CLUSTERS 2.0 a toolbox for future logistics!
CLUSTERS2.0 Working structure

WP8-Project Management

WP2-Collaboration and synergies within a Cluster (O1-C1)
WP3-Symbiotic Network of Logistic Clusters (O2-C2)
WP4-New Modular Load Units (NMLU) and Automated Transhipment (O3,O4,O5-C3,C4,C5)
WP5-Living Labs (O5, O6)

WP7-Communication and Engagement
(All Objectives – All Challenges)

WP6- Evaluation and Impact Assessment
(All Objectives – All Challenges)

WP1: Innovation Management

PTN & CLUCS
WP2
LL1

Symbiotic Network
WP3
LL2

NMLU & Transhipment
WP4
LL3

WP6: Evaluation and Impact Assessment
Key Management roles

<table>
<thead>
<tr>
<th>WP</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WP1: Innovation Management</td>
<td>BlueGreen</td>
</tr>
<tr>
<td>WP2: Collaboration and synergies within Clusters</td>
<td>IBI</td>
</tr>
<tr>
<td>WP3: Symbiotic Network of Logistics Clusters</td>
<td>Nallian</td>
</tr>
<tr>
<td>WP4: New Modular Loading Units (NMLU) and automatised transhipment</td>
<td>IML</td>
</tr>
<tr>
<td>WP5: Living labs</td>
<td>Mosaic</td>
</tr>
<tr>
<td>LL1: Proximity Terminal Network & Cluster Community System.</td>
<td>IBI</td>
</tr>
<tr>
<td>LL2: Symbiotic Network of Logistics Clusters</td>
<td>P&G</td>
</tr>
<tr>
<td>LL3: Innovative Cluster Handling Technology</td>
<td>JDR</td>
</tr>
<tr>
<td>WP6: Evaluation and Impact Assessment</td>
<td>FIT</td>
</tr>
<tr>
<td>WP7: Communication and Engagement</td>
<td>ENIDE</td>
</tr>
<tr>
<td>WP8: Project Management</td>
<td>PTV</td>
</tr>
</tbody>
</table>
Financial

Overall project budget: 6,329,618.75 €
Maximum grant: 5,998,743.75 €
Running May 1, 2017 - April 30, 2020
29 PARTNERS CLUSTERS 2.0
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 723265.
CargoStream

The independent Pan-European platform for intermodal transport
1. **WHY** do we need a change in the intermodality approach?

2. **HOW** will we drive this change in the intermodality approach?

3. **WHAT** are the next steps to drive this change in the intermodality approach?
WHY DO WE NEED A CHANGE IN THE INTERMODALITY APPROACH?

CONGESTION HAS A HUGE SOCIAL AND ECONOMIC IMPACT

CONGESTION

IMPACT OF CONGESTION

<table>
<thead>
<tr>
<th>Year</th>
<th>Direct</th>
<th>Indirect</th>
<th>Total</th>
<th>CO₂ Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>47.3</td>
<td>29.3</td>
<td>76.6</td>
<td>6858</td>
</tr>
<tr>
<td>2020</td>
<td>54.9</td>
<td>33.4</td>
<td>88.3</td>
<td>-</td>
</tr>
<tr>
<td>2025</td>
<td>60.2</td>
<td>36.9</td>
<td>97.1</td>
<td>-</td>
</tr>
<tr>
<td>2030</td>
<td>65.8</td>
<td>41</td>
<td>106.8</td>
<td>7608</td>
</tr>
</tbody>
</table>

% Change: +39%, +40%, +39%, +11%

* Costs in $ BN
** CO₂ in Kiloton Equivalent

Source: CEBR - Cost of Congestion Report
WHY DO WE NEED A CHANGE IN THE INTERMODALITY APPROACH?

A DRIVER SHORTAGE IS EXPECTED

260,000 truck drivers, representing 40 percent of Germany’s professional truckers are due to retire by 2027, according to a study by ZF Friedrichshafen AG.

Source: Bloomberg, August 2013
Source: WSJ, November 2012

The US industry is short about 35,000 truck drivers, according to industry lobby group the American Trucking Associations (ATA). The shortfall could grow to around 240,000 drivers by 2020 if it is not addressed, the ATA said.

Source: Reuters, October 2014
WHY DO WE NEED A CHANGE IN THE INTERMODALITY APPROACH?

WHILE RAIL INFRASTRUCTURE IS UNDERUTILIZED

EU 27 - FREIGHT TRANSPORT STATISTICS

<table>
<thead>
<tr>
<th>Year</th>
<th>ROAD</th>
<th>RAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NETWORK (1)</td>
<td>VOLUME (2)</td>
</tr>
<tr>
<td>1995</td>
<td>47970</td>
<td>1289</td>
</tr>
<tr>
<td>2000</td>
<td>54719</td>
<td>1519</td>
</tr>
<tr>
<td>2005</td>
<td>62218</td>
<td>1794</td>
</tr>
<tr>
<td>2009</td>
<td>66814</td>
<td>1690</td>
</tr>
<tr>
<td>% CHANGE</td>
<td>+39%</td>
<td>+31%</td>
</tr>
</tbody>
</table>

(1) Length of EU-27 Motorway Network in Kilometer
(2) Freight volume shipped in EU-27 in Ton-Kilometer
(3) Length of EU-27 Railway Network in use in Kilometer
(4) Million Ton-Kilometer per Network Kilometer

Source: EU Commission - Transportation Booklet
WHY DO WE NEED A CHANGE IN THE INTERMODALITY APPROACH?

WE ARE NOT ABLE TO SET UP AND SUSTAIN INTERMODAL CONNECTIONS

NOT ENOUGH CONNECTIVITY

NOT ENOUGH VOLUME

NOT ENOUGH FREQUENCY

HIGH COSTS

LONG LEAD TIMES
Global P&G Sustainability Report

How will we change the intermodality approach?

New Intermodal Network Approach

One example of improvement is P&G’s innovative New Intermodal Network Approach (NINA) program in Europe. P&G launched a focused group of projects in 2008 with an ambitious goal of moving 30% of our Western Europe freight transportation from over-the-road trucks to intermodal rail and shipping lines by 2015. The team worked to find or often create new rail networks between our manufacturing plants and distribution centers across the region, reducing both emissions and congestion on local roads.

The regional program exceeded our initial target, reaching its 30% goal two years early in 2013. To continue building on our progress, we have expanded our intermodal rail networks across Europe. To drive efficiency, we also continue to add additional manufacturing and transportation partners to improve collaboration and amplify the sustainability impact to not only P&G, but also other companies in the area.

A high-frequency connection for customer deliveries along the main Italian North-South trade axis. This collaborative approach with LCL Europe provides enough volume for up to five intermodal trains per day, making transit and delivery times competitive with traditional over-the-road options while providing lower emissions per case.

~25% reduction in truck transportation kilometers

Map Key
- National Lanes
- International Lanes

New intermodal shipping route implemented as part of the NINA program
1. WHY do we need a change in the intermodality approach?

2. HOW will we drive this change in the intermodality approach?

3. WHAT are the next steps to drive this change in the intermodality approach?
HOW WILL WE CHANGE THE INTERMODALITY APPROACH?

THROUGH A NEW WAY IN WHICH WE LOOK AT INTERMODALITY.

OPEN NETWORK APPROACH

MULTIDIMENSIONAL COLLABORATION

SYNCROMODAL TRANSPORTATION
HOW WILL WE CHANGE THE INTERMODALITY APPROACH?

MULTIDIMENSIONAL COLLABORATION - NEUTRAL DATA SHARING PLATFORM

M-M CONNECTED, ANONYMIZED, NORMALIZED, SECURE DATA OWNERSHIP BY THE SOURCE
HOW WILL WE CHANGE
THE INTERMODALITY APPROACH?

MULTIDIMENSIONAL COLLABORATION - NEUTRAL DATA SHARING PLATFORM
WHAT IS DONE ALREADY TO CHANGE THE INTERMODALITY APPROACH?

TESTS RUNS.
WHAT IS DONE ALREADY TO CHANGE THE INTERMODALITY APPROACH?

TESTS RUNS.

Basic bundling, Road

Multiple bundling, Intermodal
1. WHY do we need a change in the intermodality approach?

2. HOW will we drive this change in the intermodality approach?

3. WHAT are the next steps to drive this change in the intermodality approach?
WHAT ARE THE NEXT STEPS TO CHANGE THE INTERMODALITY APPROACH?

JOIN CARGOSTREAM AS A SHIPPER.

JOIN CARGOSTREAM AS A TERMINAL.

JOIN CARGOSTREAM AS A LOGISTIC SERVICE PROVIDER.

JOIN CARGOSTREAM AS A VALUE ADDED SERVICE PROVIDER.

WELCOME ON BOARD OF THIS OPEN NETWORK
WHO HAS JOINED ALREADY?

THERE IS ROOM HERE FOR YOU!
Clusters 2.0
Achieving an open, european-wide transport network

Physical internet| Graz | 7/6/2017
Logistics advisory, specializing in:

1. Tactical and strategic network design and optimization
2. Horizontal collaboration
3. Optimization in humanitarian sector

- Started in 2007
- Office in old Brewery in Breda, the Netherlands
- 15 optimization specialists, all with technical academic background
- Projects for 90% in business environment and for 10% governments and institutions

www.argusi.org
Increase in average global temperature 1880 - 2016

- Average global temperature in 2016 was the highest on record
- 40th consecutive year of average global temperatures above the 20th Century mean
- Rate of increase of global average temperature unprecedented
Global Emission and Temperature Increase Scenarios

Estimated 2100 temperature:
- 4.2°C | 7.6°F, business as usual
- 3.4°C | 6.1°F, current Nationally Determined Contributions (NDCs) (post COP21)
- 1.9°C | 3.4°F
- 1.5°C | 2.8°F

www.climatescoreboard.org (March 2017)
European Commission transport goals

- 60% reduction of GHG emissions from transport by 2050
- Optimising the performance of multimodal logistic chains, including by making greater use of more energy-efficient modes
 - 30% of road freight over 300 km should shift to other modes by 2030, and more than 50% by 2050
 - By 2050, complete a European high-speed rail network.
 - By 2050, connect all core network airports to the rail network
 - A fully functional and EU-wide multimodal TEN-T ‘core network’ by 2030, with a high quality and capacity network by 2050 and a corresponding set of information services.
Table of Content

1. Clusters 2.0
Specific project goals

2. Current state
European transport
Modal splits
Trade flows
CO2 footprint

3. The challenge
Macro-network optimization
Clusters 2.0
Specific project goals
Network design and optimization in Clusters 2.0

- Design a European core network for main transport lanes and use it optimally
 - ‘Hyperconnected’ industrial and logistics clusters
- New Intermodal Network Approach (NINA, Cargostream)
 - Business models
 - Coordination and collaboration
 - Matchmaking
- Industry group for advice and guidance
European transport
Current state
Freight transport in the EU-28, modal split of inland transport modes 2010-2015 (% of total tonne-kilometres)

Note: EU-28 includes rail transport estimates for Belgium, inland waterways transport estimates for Finland and does not include road freight transport for Malta (negligible). Figures may not add up to 100% due to rounding.

source: Eurostat
Modal Split of inland freight transport, 2015 (% of total tkm)

source: Eurostat
Freight transport in the EU-28 modal split based on five transport modes (% of total tonne-kilometres)

Note: Air and maritime cover only intra-EU transport (transport to/from countries of the EU) and exclude extra-EU transport

source: Eurostat
Freight Transport Billion TKM per mode

EU-28 Performance by Mode

<table>
<thead>
<tr>
<th>FREIGHT TRANSPORT</th>
<th>billion tkm</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROAD</td>
<td>3,299</td>
</tr>
<tr>
<td>RAIL</td>
<td>1,115</td>
</tr>
<tr>
<td>WATERWAYS</td>
<td>627</td>
</tr>
<tr>
<td>PIPILES</td>
<td>430</td>
</tr>
<tr>
<td>SEA (*)</td>
<td>1,152</td>
</tr>
<tr>
<td>AIR</td>
<td>130</td>
</tr>
<tr>
<td>TOTAL</td>
<td>7,612</td>
</tr>
</tbody>
</table>

Source: Statistical Pocketbook 2016: EU Transport in figures
International road transport performance in the EU and EFTA countries, by territory on which the transport was performed, 2015

<table>
<thead>
<tr>
<th>Rank</th>
<th>Country</th>
<th>Transport performance (million tkm)</th>
<th>Share in total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Germany</td>
<td>150 337</td>
<td>27.2</td>
</tr>
<tr>
<td>2</td>
<td>France</td>
<td>100 073</td>
<td>18.3</td>
</tr>
<tr>
<td>3</td>
<td>Poland</td>
<td>42 592</td>
<td>7.7</td>
</tr>
<tr>
<td>4</td>
<td>Spain</td>
<td>39 460</td>
<td>7.1</td>
</tr>
<tr>
<td>5</td>
<td>Italy</td>
<td>27 995</td>
<td>5.0</td>
</tr>
<tr>
<td>6</td>
<td>Belgium</td>
<td>27 269</td>
<td>4.9</td>
</tr>
<tr>
<td>7</td>
<td>Austria</td>
<td>25 074</td>
<td>4.5</td>
</tr>
<tr>
<td>8</td>
<td>Czech Republic</td>
<td>20 818</td>
<td>3.8</td>
</tr>
<tr>
<td>9</td>
<td>Netherlands</td>
<td>18 846</td>
<td>3.4</td>
</tr>
<tr>
<td>10</td>
<td>United Kingdom</td>
<td>12 858</td>
<td>2.3</td>
</tr>
<tr>
<td>11</td>
<td>Hungary</td>
<td>11 640</td>
<td>2.1</td>
</tr>
<tr>
<td>12</td>
<td>Switzerland</td>
<td>10 352</td>
<td>1.9</td>
</tr>
<tr>
<td>13</td>
<td>Sweden</td>
<td>9 890</td>
<td>1.8</td>
</tr>
<tr>
<td>14</td>
<td>Slovakia</td>
<td>8 463</td>
<td>1.5</td>
</tr>
<tr>
<td>15</td>
<td>Denmark</td>
<td>6 238</td>
<td>1.1</td>
</tr>
<tr>
<td>16</td>
<td>Slovenia</td>
<td>5 675</td>
<td>1.0</td>
</tr>
<tr>
<td>17</td>
<td>Portugal</td>
<td>5 483</td>
<td>1.0</td>
</tr>
<tr>
<td>18</td>
<td>Lithuania</td>
<td>4 343</td>
<td>0.8</td>
</tr>
<tr>
<td>19</td>
<td>Romania</td>
<td>4 316</td>
<td>0.8</td>
</tr>
<tr>
<td>20</td>
<td>Croatia</td>
<td>4 162</td>
<td>0.8</td>
</tr>
<tr>
<td>21</td>
<td>Bulgaria</td>
<td>3 662</td>
<td>0.7</td>
</tr>
<tr>
<td>22</td>
<td>Norway</td>
<td>2 825</td>
<td>0.5</td>
</tr>
<tr>
<td>23</td>
<td>Greece</td>
<td>2 571</td>
<td>0.5</td>
</tr>
<tr>
<td>24</td>
<td>Latvia</td>
<td>2 031</td>
<td>0.4</td>
</tr>
<tr>
<td>25</td>
<td>Luxembourg</td>
<td>1 522</td>
<td>0.3</td>
</tr>
<tr>
<td>26</td>
<td>Estonia</td>
<td>1 290</td>
<td>0.2</td>
</tr>
<tr>
<td>27</td>
<td>Ireland</td>
<td>1 260</td>
<td>0.2</td>
</tr>
<tr>
<td>28</td>
<td>Finland</td>
<td>1 237</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Note: Malta, Cyprus, Iceland and Liechtenstein are not available.

source: Eurostat
EU-28 quarterly road freight transport, 2011-2015 (billion tkm)

source: Eurostat

Note: EU-28 provisional data for reference year 2015; Malta excluded (see chapter "data sources and availability")
EU-28 total road transport by distance classes, 2011-2015 (2011=100, based on tkm)

- 55.9% of freight volumes are carried on distances over 300 km. For journeys at these longer distances, there is more opportunity to substitute road transport with more environmentally friendly modes.

- Longer distance class recorded highest rise compared with 2011

source: Eurostat
Rail transport by country and type of transport in 2015 - % of total TKM

source: Eurostat
Intermodal transport potential
Modal choice wrt distance

source: The Geography of Transport Systems
Simplistic view – how to reduce CO2 footprint

- Reduce emission per tonnekm
 - Cleaner vehicles, modal shift,…

- Reduce the number of transported tonnes
 - Smaller products, 3D printing,…

- Reduce the number of kilometers travelled
 - Local sourcing, load factor optimization,…
 - Improved network design and collaboration,…

Denmark: Growth in GDP and CO2 emissions since 1990
TRANS-EUROPEAN TRANSPORT NETWORK (TEN-T)

- 9 major transport corridors
- The new core network, to be established by 2030, will connect:
 - 94 main European ports with rail and road links
 - 38 key airports with rail connections into major cities
 - 15,000 km of railway line upgraded to high speed
 - 35 cross border projects to reduce bottlenecks

source: TENtec
The challenge
Network design impact

2016 SummerCon Survey
Percent Improvement from LLamasoft Projects
232 Respondents from 173 Companies
An improved European intermodal network

- The ‘backbone’ of the physical internet flows.
- Mapping all freight flows within the EU
- Conducting a greenfield study for best positioned terminals nodes
 - Green freight corridors
 - Checking for missing links in the TEN-T network
- Calculate possible savings in cost and CO2 in case of efficient use of intermodal freight transport for both the TEN-T network and the existing transport network
- Make sure that the resulting network is used effectively
 - Coordination
 - Collaborative model
 - Centralized VAS
Thank you

All questions are feedback very welcome!

Frans Cruijssen
f.cruijssen@argusi.org
www.argusi.org
Rail massification: challenges and opportunities for Physical Internet

Pôle d’Excellence Euralogistic (french logistics cluster)
Elvina Nowak, European Affairs

07/06/2017, Graz
I. EURALOGISTIC, IN A FEW WORDS

II. RAIL MASSIFICATION CONCEPT

III. OPPORTUNITIES

IV. CHALLENGES

V. CLUSTERS 2.0: MAKE A STEP FORWARD
I. EURALOGISTIC, IN A FEW WORDS

• Logistics cluster in Hauts-de-France, a strategic logistics region
• Chamber of Commerce: contracting owner
• Located nearby the Dourges multimodal platform
• Several missions:
 ➢ Dissemination of good practices in supply chain management and in logistics
 ➢ Promotion of the field towards all Hauts-de-France companies
 ➢ Tackle all economics and social issues
• Support the French government for a new national policy for the logistics field
II. RAIL MASSIFICATION CONCEPT

1. What’s the massification?

The massification is about bundling flows via a modal shift (barge – rail) for cost efficiency, reliability and sustainability linked with the Physical Internet Concept:

[Image of Physical Internet Concept]

Introduction of the PI, Benoît MONTREUIL, 2012

In logistics organization, massification concept remains limited because of:
- Lack of knowledge of multimodal transport
- High cost of transshipments
- Rail freight seen as not enough reliable (organization, delay, control)
II. RAIL MASSIFICATION CONCEPT

General massification concept figure
II. RAIL MASSIFICATION CONCEPT

2) Euralogistic approach: genesis and aims

- Main issue and stake for Euralogistic based beside a multimodal platform

- In 2015, P&G expresses to Euralogistic its interest (for its Amiens’ plant) to use modal shift through « massification »

- Since 2015, around 10 main regional shippers have committed into a new project: bundling their goods on a train rather than shipping via road

Innovation: From shippers initiative
II. RAIL MASSIFICATION CONCEPT

2) Euralogistic approach: genesis and aims

• Fostering the modal shift from existing multimodal platform
• Offering to regional shipper departures timed and optimized towards several European destinations
• Strengthening the regional attractiveness and spreading through a:
 - Committed
 - Innovative
 - Disruptive PROJECT
II. RAIL MASSIFICATION CONCEPT

3. Methodology

• Heighten awareness of others regional shippers to gather them around a table => 8
• Collecting main goods flows of each companies (volume, origin, destination, transport mode, seasonality)
• Mapping and analyzing data with Nallian involved into CLUSTERS 2.0 (CargoStream)
• Selection of the most relevant road for launching the train => considered as a test
• At this step, organization of 10 meeting (4 per year)
II. RAIL MASSIFICATION CONCEPT

4) The pilote project

- The rail massification will be tested between Dourges multimodal platform and Barking => the analyse through ICT raises a need to join the UK

310 KMS VIA THE CHANNEL
III. OPPORTUNITIES

- Reduction of transports cost when goods are bundling => increase the filling rate
- Improvement of the ecological efficiency => decrease the foot print and increase company CSR
- Reduction of bottleneck
- Implementation of new logistics models => reliability

Opportunities for Physical Internet

- Providing a new way to reach a common stake through a collaboration: reducing cost and improving sustainability for a new logistics model
- Creation of a new « methodology » to tackle PI issues
- Fostering an interconnected network and creating the missing link => UK through France to Spain or Italy by train
- Demonstration of the reliability and the efficiency of the multimodality
- Support a new mind shift

=> one of tool to run towards Physical Internet as a concrete approach
IV. CHALLENGES

- The main challenges remains making shipper working together
- Demonstration of economis, sustainability and reliability advantages
- Definition of a common target to fit with all shippers expectations and needs
- Finding a common agreement and business model to committ all shippers

Launching the train btw Dourges to Barking, has required:

a. Making a business case to assess the economics and technical feasability

b. Without back haul, the test won’t be relevant (Exportation from UK is weak – many of trucks are empty)
c. Defining an action plan to find shippers, LSP, companies in UK who would be interested

d. Thinking about the best opportunity to attract them => removing from Barking terminal to Daventry?

e. Hiring logistics consultant to help the group in UK and sensitize other stakeholders => our last meeting (6/27/2017)

CHALLENGES STILL REMAIN SINCE ECONOMICS STAKE MUST BE DEMONSTRATED EVEN IF SUSTAINABILITY IS ACQUIRED
V. CLUSTERS 2.0: MAKE A STEP FORWARD

- The massification pilot project integrated into CLUSTERS 2.0 throughout a LivingLab
- Its innovative approach embraces the whole project => gathering shippers to use a smooth freight mode is the first effort ever engaged
- The aim is to bundle goods on train within TEN-T Corridors via a modal shift

TRANS-EUROPEAN TRANSPORT NETWORK, EU COMMISSION
V. CLUSTERS 2.0: MAKE A STEP FORWARD

• First target into CLUSTERS 2.0:

 ➢ Increasing of intermodal transport by 50%
 ➢ Increasing vehicle load factor by 75%

• Second target:

 ➢ If the pilot succeeds, dissemination of a common methodology to be duplicated with other HUB (Duisport, Interporto Bologna...) to foster a better interaction between logistics clusters

MAIN AIM: CONSOLIDATION OF FREIGHT VOLUMES BTW LOGISTICS CLUSTERS NETWORKS FOR MORE EFFICIENT AND BETTER INTEGRATED SUB TRANSPORT SYSTEMS AND MODES
THANK YOU FOR YOUR ATTENTION

POLE EURALOGISTIC

Laurent DESPREZ, Euralogistic Manager: l.desprez@artois.cci.fr
Elvina NOWAK, European Affairs: e.nowak@artois.cci.fr